本便笺用来测试 Latex 公式的正确性。

二项式系数 "$n$ 选取 $k$":$$ \binom nk $$

对应的公式:$$ \binom nk = \frac {n!} {k! (n-k)!} = \frac {n^\underline k} {k!} $$

Stirling 数 "$n$ 轮换 $k$"/"$n$ 子集 $k$":$$ {n \brack k}, {n \brace k} $$

$n$ 阶单位矩阵:$$ \mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix} $$

下标测试:$a_{b\_c}, \mathrm{weight\_min}, \mathrm{weight\_max}$

连等式:\begin{align*} & D(X) = \frac 1n \sum_{i=1}^n \left( X_i - \bar X \right)^2 \\ = & \frac 1n \sum_{i=1}^n \left( X_i^2 - 2 X_i \bar X + \bar X^2 \right) \\ = & \frac 1n \sum_{i=1}^n X_i^2 - \frac {2 \bar X} n \sum_{i=1}^n X_i + \bar X^2 \\ = & \frac 1n \sum_{i=1}^n X_i^2 - \frac 1 {n^2} \left( \sum_{i=1}^n X_i \right)^2 \\ = & E \left( X^2 \right) - E^2 (X) \end{align*}

公式编号:

$$ 2a + 3b \leq 7 \tag 1 \label 1 $$

$$ 5a + 2b \leq 12 \tag 2 \label 2 $$

$\dfrac 3 {11} \times \eqref 1 + \dfrac 1 {11} \times \eqref 2$,得

$$ a + b \leq 3 \tag 3 \label 3 $$